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Abstract

We prove two antibasis theorems for Π0
1 classes. The first is a jump inver-

sion theorem for Π0
1 classes with respect to the global structure of the Turing

degrees. For any P ⊆ 2ω, define S(P ), the degree spectrum of P , to be the
set of all Turing degrees a such that there exists A ∈ P of degree a. For any
degree a ≥ 0′, let Jump−1(a) = {b : b′ = a}. We prove that, for any a ≥ 0′

and any Π0
1 class P , if Jump−1(a) ⊆ S(P ) then P contains a member of every

degree. For any degree a ≥ 0′ such that a is recursively enumerable (r.e.) in 0′,
let Jump−1

≤0′(a) = {b : b ≤ 0′ and b′ = a}. The second theorem concerns the
degrees below 0′. We prove that for any a ≥ 0′ which is recursively enumerable
in 0′ and any Π0

1 class P , if Jump−1
≤0′(a) ⊆ S(P ) then P contains a member of

every degree.
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1 Introduction

A Π0
1 class is an effectively closed subset of the Cantor space. The study of

Π0
1 classes has led to a rich and well developed theory. Some of the most

important and frequently used results are basis theorems: a basis theorem tells
us that every nonempty Π0

1 class has a member of a particular kind. The
low basis theorem of Jockusch and Soare [9], [10], for example, tells us that
every nonempty Π0

1 class contains a member of low degree, i.e. a degree a such
that a′ = 0′. The same authors proved that any nonempty Π0

1 class contains a
member of hyperimmune-free degree. These results are proved by the method
of forcing with Π0

1 classes in which we successively move from a set to one
of its subsets in order to force satisfaction of a given requirement. This is a
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very general technique and can be used to obtain many useful results. Another
important result by Jockusch and Soare is that every Π0

1 class which does not
contain a recursive member contains members of degrees a and b such that
a ∧ b = 0. It is possible to observe, however, that there exists a Π0

1 class P

with no recursive member such that for any A,B ∈ P we have ∅′ 6≤T A ⊕ B,
where we define A ⊕ B to be {2i : i ∈ A} ∪ {2i + 1 : i ∈ B}. Another example
of a basis result for Π0

1 classes is that every nonempty Π0
1 class has a member

of recursively enumerable degree. In [4], it was proven that every nonempty Π0
1

class which does not contain a recursive member contains a member of properly
lown degree, i.e. a degree a such that a(n) = 0(n) but a(n−1) 6= 0(n−1).

An antibasis theorem, on the other hand, tells us that a Π0
1 class cannot have

all/any members of a particular kind without having a member of every degree.
Kent and Lewis [5] proved the low antibasis theorem which says that if a Π0

1

class contains a member of every low degree then it contains a member of every
degree. We prove two antibasis theorems for Π0

1 classes. The first concerns
the global structure of the Turing degrees, and the second concerns the degrees
below 0′. The proofs will be based on the jump inversion theorems in [1] and
[2].

A general survey for Π0
1 classes can be found in [4], [8].

2 Terminology and Notation

2.1 Notation

Let ω denote the set of natural numbers. We let 2<ω denote the set of all
finite sequences of 0’s and 1’s. We denote sets of natural numbers with A,B,C

and for a set A, A denotes the complement of A, i.e. ω − A. We identify
a set A ⊆ ω with its characteristic function f : ω 7→ {0, 1} such that, for
any n ∈ ω, if n ∈ A then f(n) = 1, and if n 6∈ A then f(n) = 0. We let
{Ψi}i∈ω be an effective enumeration of the Turing functionals. Ψe is total if it
is defined for every argument, otherwise it is called partial. For any A ⊆ ω and
n ∈ ω, Ψe(A;n) ↓= m denotes that the e-th Turing functional with oracle A on
argument n is defined and equal to m. For any A,n, Ψe(A;n) ↑ denotes it is
not the case that Ψe(A;n) ↓. Since Ψe(A) denotes a partial function and since
we identify subsets of ω with their characteristic functions, it is reasonable to
write Ψe(A) = B for some B ⊆ ω. We denote the Turing degrees with a,b, c.
Partial functions are also denoted by f, g. We let 〈., .〉 be a computable bijection
ω × ω → ω. We denote strings ∈ 2<ω with σ, τ , ρ. We let σ ∗ τ denote the
concatenation of σ followed by τ . We let σ ⊆ τ denote that σ is an initial
segment of τ . We let σ ⊂ τ mean σ ⊆ τ but σ 6= τ . We say a string σ is
incompatible with τ if neither σ ⊆ τ nor τ ⊆ σ. Otherwise we say that σ is
compatible with τ . We say that σ extends τ if τ ⊆ σ. Let |σ| denote the length
of σ. σ(i) denotes the (i + 1)st bit of σ. For any σ ∈ 2<ω and for any n ∈ ω,
we let Ψe(σ;n) be defined and equal to Ψe(A;n) if σ(i) = A(i) for all i < |σ|
and if computing Ψe(A;n) requires only values A(i) for i < |σ|. Let A � z,
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σ � z denote the restriction of A(x) or σ(x) to those x < z. For a set A ⊆ ω,
we define the jump of A, denoted A′, to be {e : Ψe(A; e) ↓}. A tree T ⊆ 2<ω

is a set of finite binary strings. We say that a set A ⊆ ω lies on T if there
exist infinitely many σ ⊂ A in T . A set A is a path on a tree T if A lies on
T . A leaf of T is a string σ ∈ T such that τ ∈ T for no τ ⊃ σ. We say a tree
T is perfect if it is nonempty and every element has at least two incompatible
extensions in T . We say that σ and σ′ are e-splitting if there exists some n ∈ ω

such that Ψe(σ;n) ↓6= Ψe(σ
′;n) ↓. We say a tree T is e-splitting if every pair

of incompatible strings in T is e-splitting. If σ ∈ T then the level of σ in T is
the number of proper initial segments of σ in T . If σ, τ ∈ T , σ ⊂ τ and there
does not exist σ′ with σ ⊂ σ′ ⊂ τ then we say that τ is an immediate successor

of σ in T and σ is the immediate predecessor of τ in T . We let X ⊆ 2ω be a
Π0

1 class if there exists a recursive predicate ϕ(n,A) s.t. A ∈ X ⇐⇒ ∀n ϕ(n,A)
where n ranges over ω and A ranges over reals. A Π0

1 class thus can be taken as
the set of infinite branches of a downward closed recursive set of finite binary
strings, i.e. if τ ∈ T and σ ⊂ τ then σ ∈ T . We let {Λi}i∈ω be an effective
listing of downward closed recursive sets of strings such that for any Π0

1 class P

there exists i such that P is the set of all infinite paths through Λi.

2.2 Background on Π0
1 classes

One important property of Π0
1 classes is that for any axiomatizable theory (the

deductive closure of a recursively enumerable set of sentences in a language),
the set of complete and consistent extensions can be seen as a Π0

1 class [3].
The opposite direction is also proved in [7]. That is, any Π0

1 class can be seen
as the set of complete and consistent extensions of an axiomatizable theory.
Since Π0

1 classes are defined on 2ω, the Cantor space, it is useful to mention the
compactness property of this space. This is provided by weak König’s lemma
which tells us that if Λ is an infinite downward closed set of finite binary strings,
i.e. all initial segments of any member of the set are also in the set, then there
exists an infinite path through Λ. Countable Π0

1 classes are another type of
effectively closed subset of the Cantor space. It is worth noting that countable
Π0

1 classes contain isolated points and that every isolated point is recursive [6].
So if a Π0

1 class contains no recursive member then it must be uncountable.

3 Antibasis theorems

We begin with some definitions.

Definition 1. Let E be a class of Turing degrees. We say that E is an antibasis

for Π0
1 classes if whenever a Π0

1 class contains a member of every degree a ∈ E,
it contains a member of every degree.

Definition 2. For any P ⊆ 2ω, define S(P ), the degree spectrum of P , to be
the set of all Turing degrees a such that there exists A ∈ P of degree a.
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For τ which is partial computable with computable domain (possibly finite)
and for every i, j, we define σ(i, j, τ) as follows: We let T be an i-splitting set
of strings, which is recursively enumerable (in some generic fashion) and such
that:

(i) all strings in T are compatible with τ ;

(ii) each element which is not a leaf has precisely two immediate successors;

(iii) for any σ′ which is a leaf of T there does not exist an i-splitting set of
strings above σ′ compatible with τ ;

(iv) at each stage of the enumeration of T we only enumerate strings which
properly extend leaves of the set of strings previously enumerated into T .

So roughly speaking, when τ is a finite string, T is the recursively enumer-
able i-splitting tree above τ . When τ has infinite domain, T is a recursively
enumerable i-splitting tree in which all strings are compatible with τ . Let the
strings in T be ordered according to their level and then from left to right. If
there exists a string σ′ in T such that either σ′ is a leaf of T , or else Ψi(σ

′) 6∈ Λj

then define σ(i, j, τ) to be the least such string, where Λj is as defined in 2.1. If
there exists no such string then σ(i, j, τ) is undefined. Further reading on this
method can be found in [5].

Definition 3. For any degree a ≥ 0′, let Jump−1(a) = {b : b′ = a}. Similarly,
for any degree a ≥ 0′ such that a is recursively enumerable (r.e.) in 0′, let
Jump−1

≤0′(a) = {b : b ≤ 0′ and b′ = a}.

Theorem 4. For any a ≥ 0′ and any Π0
1 class P , if Jump−1(a) ⊆ S(P ) then P

contains a member of every degree.

Proof. Note that if a Π0
1 class contains all paths through a perfect computable

tree, then it has a member of every degree. Given a set A ≥T ∅′, let j be such
that [Λj ] = P does not contain a member of every degree. Let σ(i, j, τ) be
defined as above, for any given i, τ . Note that, since P does not have a member
of every degree, σ(i, j, τ) is defined for all i, τ , since otherwise Λj is a superset
of the perfect tree which is the set of all strings Ψi(τ

′) for τ ′ ∈ T , with T as
specifed in the definition of σ(i, j, τ).

We will define B =
⋃

i∈ω σi such that each σi is finite, which is nonrecursive
such that B′ ≡T A and such that if Ψi(B) is total and nonrecursive then it
is not an element of [Λj ] (here we do not have to consider the case that τ has
infinite domain in the definition of σ(i, j, τ)).

At stage s = 0, define σ0 = ∅.
If s = 4i + 1, define σ4i+1 = σ(i, j, σ4i).
If s = 4i+2, then see if there exists σ ⊇ σ4i+1 such that Ψi(σ; i) ↓. If so, we

let σ4i+2 = σ for smallest such σ. Otherwise just let σ4i+2 be some σ ⊇ σ4i+1.
If s = 4i+3, find the smallest σ ⊇ σ4i+2 such that σ is not an initial segment

of Ψi(∅). Then we let σ4i+3 = σ.
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If s = 4i + 4, we code the i-th element of A into B simply by σ4i+4 =
σ4i+3 ∗ 〈A(i)〉.

Note that the first three steps are recursive in ∅′ which is recursive in A by
hypothesis. The fourth step is recursive in A since we use it directly. Hence
the construction is recursive in A. Since i ∈ B′ ⇐⇒ Ψi(σ4i+2; i) ↓ we have
B′ ≤T A. The construction is also recursive in ∅′ ⊕ B since the action at stage
4i + 4 simply adds one bit which can be determined by B. Then i ∈ A if and
only if B(|σ4i+4|) = 1, so A ≤T ∅′ ⊕ B. Since B ⊕ ∅′ ≤T B′ we have A ≤T B′.
Also note that if Ψe(B) is total and nonrecursive then it is not an element of
[Λj ]. This is satisfied at stage 4i + 1. �

Theorem 4 basically says that for any degree a ≥ 0′, if a Π0
1 class contains

a member of every degree whose jump is a then it contains a member of every
degree. We now prove the next theorem which concerns the degrees below 0′.

Theorem 5. For any c ≥ 0′ which is recursively enumerable in 0′ and any Π0
1

class P , if Jump−1
≤0′(c) ⊆ S(P ) then P contains a member of every degree.

Proof. Given a degree c ≥ 0′ which is r.e. in 0′, let j be such that [Λj ] = P does
not contain a member of every degree. We aim to construct a set A =

⋃

s∈ω σs

by coinfinite extension such that A ≤T ∅′ and A′ ≡T C for C ∈ c and such that
Ψi(A) 6∈ [Λj ] for any i, if Ψi(A) is total and non-recursive.

Let C ∈ c be r.e. in ∅′ such that ∅′ ≤T C. To satisfy C ≤T A′ we want
to make sure that x ∈ C ⇐⇒ lims→∞A(〈x, s〉) = 1, so that C ≤T A′ by the
relativized limit lemma. Choose a one-one enumeration f of C recursive in ∅′.
When a new element appears in f , we put the x-th column in A with finitely
many exceptions. To make sure that A′ ≤T C we will prove the existence of
some function g which is recursive in C such that Ψe(A; e) ↓ if and only if
Ψe(σg(e); e) ↓.

At stage s = 0 we let σ0 = ∅. At each next stage,
If s = 3i + 1 then σ3i+1 = σ(i, j, σ3i). Note that we can compute this value

using an oracle for ∅′ since σ3i is partial computable with computable domain.
If s = 3i + 2 then, given σ3i+1, choose some n ∈ ω such that σ3i+1(n) ↑.

Then define

σ3i+2(n) =

{

1 − Ψi(∅;n) if Ψi(∅;n) ↓
0 otherwise

If s = 3i + 3, given σ3i+2, we look for the least e ≤ 3i + 2 such that
Ψe(σ3i+2; e) ↑ and such that there exists a string σ compatible with σ3i+2 such
that Ψe(σ; e) ↓ and giving only value 0 to elements of the columns with index
smaller than e, when σ3i+2 is not already defined on them. If e exists, then let
σ be the smallest string compatible with σ3i+2 and then define σ3i+3 as follows.

σ3i+3(x) =















σ3i+2(x) if σ3i+2(x) ↓
σ(x) if σ(x) ↓
1 if x = 〈f(i), z〉, otherwise
0 if x = 〈n, z〉 ∧ n 6= f(i) ∧ n, z ≤ 3i + 2
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In this case we also say that g receives attention for argument e at stage s.
If e does not exist we define σ3i+3 as above but we take σ = ∅. That is we

define σ3i+3 in this case as

σ3i+3(x) =







σ3i+2(x) if σ3i+2(x) ↓
1 if x = 〈f(i), z〉, otherwise
0 if x = 〈n, z〉 ∧ n 6= f(i) ∧ n, z ≤ 3i + 2

We then let A =
⋃

s∈ω σs. Since the construction of A is recursive in ∅′,
A ≤T ∅′ is satisfied.

Lemma 6. C ≤T A′.

Proof. Since the columns that correspond to the elements of C are only finitely
affected by the construction, the last clause in the definition of σ3i+3 ensures
that A is total. We have that A ≤T ∅′ by construction and x ∈ C ⇐⇒
lims→∞A(〈x, s〉) = 1. So C ≤T A′ is satisfied by the relativized limit lemma.

Lemma 7. A′ ≤T C.

Proof. We show how to construct the function g such that Ψe(A; e) ↓ if and
only if Ψe(σg(e); e) ↓. Choose s′ large enough so that the elements smaller than
e which are in C have been generated before stage s′. We can find such s′

recursively in C. Then let s′′ ≥ s′ + 4e be congruent to 3 mod 4, and define
g(e) = s′′. Now we have Ψe(A; e) ↓⇐⇒ Ψe(σs′′ ; e) ↓ since if Ψe(σs′′ ; e) ↑ and
Ψe(σ; e) ↓ for some extension σ of σs′′ which is correctly defined on higher
priority columns, then g would receive attention with respect to argument e at
stage s′′. �

Corollary 8. If a Π0
1 class contains a member of every degree of any nonrecur-

sive jump level below 0′, then it contains a member of every degree.
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