Antibasis theorems for Π_1^0 classes and the jump hierarchy

Ahmet Çevik*

Abstract

We prove two antibasis theorems for Π_1^0 classes. The first is a jump inversion theorem for Π_1^0 classes with respect to the global structure of the Turing degrees. For any $P \subseteq 2^\omega$, define S(P), the degree spectrum of P, to be the set of all Turing degrees \mathbf{a} such that there exists $A \in P$ of degree \mathbf{a} . For any degree $\mathbf{a} \ge \mathbf{0}'$, let $\mathrm{Jump}^{-1}(\mathbf{a}) = \{\mathbf{b} : \mathbf{b}' = \mathbf{a}\}$. We prove that, for any $\mathbf{a} \ge \mathbf{0}'$ and any Π_1^0 class P, if $\mathrm{Jump}^{-1}(\mathbf{a}) \subseteq S(P)$ then P contains a member of every degree. For any degree $\mathbf{a} \ge \mathbf{0}'$ such that \mathbf{a} is recursively enumerable (r.e.) in $\mathbf{0}'$, let $\mathrm{Jump}^{-1}_{\le \mathbf{0}'}(\mathbf{a}) = \{\mathbf{b} : \mathbf{b} \le \mathbf{0}' \text{ and } \mathbf{b}' = \mathbf{a}\}$. The second theorem concerns the degrees below $\mathbf{0}'$. We prove that for any $\mathbf{a} \ge \mathbf{0}'$ which is recursively enumerable in $\mathbf{0}'$ and any Π_1^0 class P, if $\mathrm{Jump}^{-1}_{\le \mathbf{0}'}(\mathbf{a}) \subseteq S(P)$ then P contains a member of every degree.

Keywords: Π_1^0 classes, antibasis theorem, jump hierarchy, jump inversion.

1 Introduction

A Π_1^0 class is an effectively closed subset of the Cantor space. The study of Π_1^0 classes has led to a rich and well developed theory. Some of the most important and frequently used results are *basis* theorems: a basis theorem tells us that every nonempty Π_1^0 class has a member of a particular kind. The low basis theorem of Jockusch and Soare [9], [10], for example, tells us that every nonempty Π_1^0 class contains a member of low degree, i.e. a degree **a** such that $\mathbf{a}' = \mathbf{0}'$. The same authors proved that any nonempty Π_1^0 class contains a member of hyperimmune-free degree. These results are proved by the method of forcing with Π_1^0 classes in which we successively move from a set to one of its subsets in order to *force* satisfaction of a given requirement. This is a

^{*}University of Leeds, Department of Pure Mathematics, LS2 9JT Leeds, UK. E-mail: mmac@leeds.ac.uk

very general technique and can be used to obtain many useful results. Another important result by Jockusch and Soare is that every Π^0_1 class which does not contain a recursive member contains members of degrees \mathbf{a} and \mathbf{b} such that $\mathbf{a} \wedge \mathbf{b} = \mathbf{0}$. It is possible to observe, however, that there exists a Π^0_1 class P with no recursive member such that for any $A, B \in P$ we have $\emptyset' \not\leq_T A \oplus B$, where we define $A \oplus B$ to be $\{2i : i \in A\} \cup \{2i+1 : i \in B\}$. Another example of a basis result for Π^0_1 classes is that every nonempty Π^0_1 class has a member of recursively enumerable degree. In [4], it was proven that every nonempty Π^0_1 class which does not contain a recursive member contains a member of properly low_n degree, i.e. a degree \mathbf{a} such that $\mathbf{a}^{(n)} = \mathbf{0}^{(n)}$ but $\mathbf{a}^{(n-1)} \neq \mathbf{0}^{(n-1)}$.

An antibasis theorem, on the other hand, tells us that a Π_1^0 class cannot have all/any members of a particular kind without having a member of every degree. Kent and Lewis [5] proved the low antibasis theorem which says that if a Π_1^0 class contains a member of every low degree then it contains a member of every degree. We prove two antibasis theorems for Π_1^0 classes. The first concerns the global structure of the Turing degrees, and the second concerns the degrees below $\mathbf{0}'$. The proofs will be based on the jump inversion theorems in [1] and [2].

A general survey for Π_1^0 classes can be found in [4], [8].

2 Terminology and Notation

2.1 Notation

Let ω denote the set of natural numbers. We let $2^{<\omega}$ denote the set of all finite sequences of 0's and 1's. We denote sets of natural numbers with A, B, Cand for a set A, \overline{A} denotes the complement of A, i.e. $\omega - A$. We identify a set $A \subseteq \omega$ with its characteristic function $f: \omega \mapsto \{0,1\}$ such that, for any $n \in \omega$, if $n \in A$ then f(n) = 1, and if $n \notin A$ then f(n) = 0. We let $\{\Psi_i\}_{i\in\omega}$ be an effective enumeration of the Turing functionals. Ψ_e is total if it is defined for every argument, otherwise it is called partial. For any $A \subseteq \omega$ and $n \in \omega, \Psi_e(A;n) \downarrow = m$ denotes that the e-th Turing functional with oracle A on argument n is defined and equal to m. For any $A, n, \Psi_e(A; n) \uparrow$ denotes it is not the case that $\Psi_e(A;n) \downarrow$. Since $\Psi_e(A)$ denotes a partial function and since we identify subsets of ω with their characteristic functions, it is reasonable to write $\Psi_e(A) = B$ for some $B \subseteq \omega$. We denote the Turing degrees with $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Partial functions are also denoted by f, g. We let $\langle ., . \rangle$ be a computable bijection $\omega \times \omega \to \omega$. We denote strings $\in 2^{<\omega}$ with σ, τ, ρ . We let $\sigma * \tau$ denote the concatenation of σ followed by τ . We let $\sigma \subseteq \tau$ denote that σ is an initial segment of τ . We let $\sigma \subset \tau$ mean $\sigma \subseteq \tau$ but $\sigma \neq \tau$. We say a string σ is incompatible with τ if neither $\sigma \subseteq \tau$ nor $\tau \subseteq \sigma$. Otherwise we say that σ is compatible with τ . We say that σ extends τ if $\tau \subseteq \sigma$. Let $|\sigma|$ denote the length of σ . $\sigma(i)$ denotes the (i+1)st bit of σ . For any $\sigma \in 2^{<\omega}$ and for any $n \in \omega$, we let $\Psi_e(\sigma;n)$ be defined and equal to $\Psi_e(A;n)$ if $\sigma(i)=A(i)$ for all $i<|\sigma|$ and if computing $\Psi_e(A;n)$ requires only values A(i) for $i < |\sigma|$. Let $A \upharpoonright z$,

 $\sigma \upharpoonright z$ denote the restriction of A(x) or $\sigma(x)$ to those x < z. For a set $A \subseteq \omega$, we define the jump of A, denoted A', to be $\{e: \Psi_e(A;e) \downarrow\}$. A tree $T \subseteq 2^{<\omega}$ is a set of finite binary strings. We say that a set $A \subseteq \omega$ lies on T if there exist infinitely many $\sigma \subset A$ in T. A set A is a path on a tree T if A lies on T. A leaf of T is a string $\sigma \in T$ such that $\tau \in T$ for no $\tau \supset \sigma$. We say a tree T is perfect if it is nonempty and every element has at least two incompatible extensions in T. We say that σ and σ' are e-splitting if there exists some $n \in \omega$ such that $\Psi_e(\sigma;n) \downarrow \neq \Psi_e(\sigma';n) \downarrow$. We say a tree T is e-splitting if every pair of incompatible strings in T is e-splitting. If $\sigma \in T$ then the level of σ in T is the number of proper initial segments of σ in T. If $\sigma, \tau \in T$, $\sigma \subset \tau$ and there does not exist σ' with $\sigma \subset \sigma' \subset \tau$ then we say that τ is an *immediate successor* of σ in T and σ is the immediate predecessor of τ in T. We let $X \subseteq 2^{\omega}$ be a Π_1^0 class if there exists a recursive predicate $\varphi(n,A)$ s.t. $A \in X \iff \forall n \ \varphi(n,A)$ where n ranges over ω and A ranges over reals. A Π_1^0 class thus can be taken as the set of infinite branches of a downward closed recursive set of finite binary strings, i.e. if $\tau \in T$ and $\sigma \subset \tau$ then $\sigma \in T$. We let $\{\Lambda_i\}_{i \in \omega}$ be an effective listing of downward closed recursive sets of strings such that for any Π_1^0 class P there exists i such that P is the set of all infinite paths through Λ_i .

2.2 Background on Π_1^0 classes

One important property of Π_1^0 classes is that for any axiomatizable theory (the deductive closure of a recursively enumerable set of sentences in a language), the set of complete and consistent extensions can be seen as a Π_1^0 class [3]. The opposite direction is also proved in [7]. That is, any Π_1^0 class can be seen as the set of complete and consistent extensions of an axiomatizable theory. Since Π_1^0 classes are defined on 2^ω , the Cantor space, it is useful to mention the compactness property of this space. This is provided by weak König's lemma which tells us that if Λ is an infinite downward closed set of finite binary strings, i.e. all initial segments of any member of the set are also in the set, then there exists an infinite path through Λ . Countable Π_1^0 classes are another type of effectively closed subset of the Cantor space. It is worth noting that countable Π_1^0 classes contain isolated points and that every isolated point is recursive [6]. So if a Π_1^0 class contains no recursive member then it must be uncountable.

3 Antibasis theorems

We begin with some definitions.

Definition 1. Let **E** be a class of Turing degrees. We say that **E** is an *antibasis* for Π_1^0 classes if whenever a Π_1^0 class contains a member of every degree $\mathbf{a} \in \mathbf{E}$, it contains a member of every degree.

Definition 2. For any $P \subseteq 2^{\omega}$, define S(P), the *degree spectrum* of P, to be the set of all Turing degrees \mathbf{a} such that there exists $A \in P$ of degree \mathbf{a} .

For τ which is partial computable with computable domain (possibly finite) and for every i,j, we define $\sigma(i,j,\tau)$ as follows: We let T be an i-splitting set of strings, which is recursively enumerable (in some generic fashion) and such that:

- (i) all strings in T are compatible with τ ;
- (ii) each element which is not a leaf has precisely two immediate successors;
- (iii) for any σ' which is a leaf of T there does not exist an i-splitting set of strings above σ' compatible with τ ;
- (iv) at each stage of the enumeration of T we only enumerate strings which properly extend leaves of the set of strings previously enumerated into T.

So roughly speaking, when τ is a finite string, T is the recursively enumerable i-splitting tree above τ . When τ has infinite domain, T is a recursively enumerable i-splitting tree in which all strings are compatible with τ . Let the strings in T be ordered according to their level and then from left to right. If there exists a string σ' in T such that either σ' is a leaf of T, or else $\Psi_i(\sigma') \notin \Lambda_j$ then define $\sigma(i,j,\tau)$ to be the least such string, where Λ_j is as defined in 2.1. If there exists no such string then $\sigma(i,j,\tau)$ is undefined. Further reading on this method can be found in [5].

Definition 3. For any degree $\mathbf{a} \geq \mathbf{0}'$, let $\mathrm{Jump}^{-1}(\mathbf{a}) = \{\mathbf{b} : \mathbf{b}' = \mathbf{a}\}$. Similarly, for any degree $\mathbf{a} \geq \mathbf{0}'$ such that \mathbf{a} is recursively enumerable (r.e.) in $\mathbf{0}'$, let $\mathrm{Jump}_{\mathbf{0}'}^{-1}(\mathbf{a}) = \{\mathbf{b} : \mathbf{b} \leq \mathbf{0}' \text{ and } \mathbf{b}' = \mathbf{a}\}$.

Theorem 4. For any $\mathbf{a} \geq \mathbf{0}'$ and any Π_1^0 class P, if $\mathrm{Jump}^{-1}(\mathbf{a}) \subseteq S(P)$ then P contains a member of every degree.

Proof. Note that if a Π_1^0 class contains all paths through a perfect computable tree, then it has a member of every degree. Given a set $A \geq_T \emptyset'$, let j be such that $[\Lambda_j] = P$ does not contain a member of every degree. Let $\sigma(i, j, \tau)$ be defined as above, for any given i, τ . Note that, since P does not have a member of every degree, $\sigma(i, j, \tau)$ is defined for all i, τ , since otherwise Λ_j is a superset of the perfect tree which is the set of all strings $\Psi_i(\tau')$ for $\tau' \in T$, with T as specifed in the definition of $\sigma(i, j, \tau)$.

We will define $B = \bigcup_{i \in \omega} \sigma_i$ such that each σ_i is finite, which is nonrecursive such that $B' \equiv_T A$ and such that if $\Psi_i(B)$ is total and nonrecursive then it is not an element of $[\Lambda_j]$ (here we do not have to consider the case that τ has infinite domain in the definition of $\sigma(i, j, \tau)$).

```
At stage s = 0, define \sigma_0 = \emptyset.
```

If s = 4i + 1, define $\sigma_{4i+1} = \sigma(i, j, \sigma_{4i})$.

If s=4i+2, then see if there exists $\sigma \supseteq \sigma_{4i+1}$ such that $\Psi_i(\sigma;i) \downarrow$. If so, we let $\sigma_{4i+2} = \sigma$ for smallest such σ . Otherwise just let σ_{4i+2} be some $\sigma \supseteq \sigma_{4i+1}$.

If s=4i+3, find the smallest $\sigma \supseteq \sigma_{4i+2}$ such that σ is not an initial segment of $\Psi_i(\emptyset)$. Then we let $\sigma_{4i+3}=\sigma$.

If s = 4i + 4, we code the *i*-th element of A into B simply by $\sigma_{4i+4} = \sigma_{4i+3} * \langle A(i) \rangle$.

Note that the first three steps are recursive in \emptyset' which is recursive in A by hypothesis. The fourth step is recursive in A since we use it directly. Hence the construction is recursive in A. Since $i \in B' \iff \Psi_i(\sigma_{4i+2};i) \downarrow$ we have $B' \leq_T A$. The construction is also recursive in $\emptyset' \oplus B$ since the action at stage 4i+4 simply adds one bit which can be determined by B. Then $i \in A$ if and only if $B(|\sigma_{4i+4}|) = 1$, so $A \leq_T \emptyset' \oplus B$. Since $B \oplus \emptyset' \leq_T B'$ we have $A \leq_T B'$. Also note that if $\Psi_e(B)$ is total and nonrecursive then it is not an element of $[\Lambda_i]$. This is satisfied at stage 4i+1.

Theorem 4 basically says that for any degree $\mathbf{a} \geq \mathbf{0}'$, if a Π_1^0 class contains a member of every degree whose jump is \mathbf{a} then it contains a member of every degree. We now prove the next theorem which concerns the degrees below $\mathbf{0}'$.

Theorem 5. For any $\mathbf{c} \geq \mathbf{0}'$ which is recursively enumerable in $\mathbf{0}'$ and any Π_1^0 class P, if $\mathrm{Jump}_{<\mathbf{0}'}^{-1}(\mathbf{c}) \subseteq S(P)$ then P contains a member of every degree.

Proof. Given a degree $\mathbf{c} \geq \mathbf{0}'$ which is r.e. in $\mathbf{0}'$, let j be such that $[\Lambda_j] = P$ does not contain a member of every degree. We aim to construct a set $A = \bigcup_{s \in \omega} \sigma_s$ by coinfinite extension such that $A \leq_T \emptyset'$ and $A' \equiv_T C$ for $C \in \mathbf{c}$ and such that $\Psi_i(A) \not\in [\Lambda_j]$ for any i, if $\Psi_i(A)$ is total and non-recursive.

Let $C \in \mathbf{c}$ be r.e. in \emptyset' such that $\emptyset' \leq_T C$. To satisfy $C \leq_T A'$ we want to make sure that $x \in C \iff \lim_{s \to \infty} A(\langle x, s \rangle) = 1$, so that $C \leq_T A'$ by the relativized limit lemma. Choose a one-one enumeration f of C recursive in \emptyset' . When a new element appears in f, we put the x-th column in A with finitely many exceptions. To make sure that $A' \leq_T C$ we will prove the existence of some function g which is recursive in C such that $\Psi_e(A;e) \downarrow$ if and only if $\Psi_e(\sigma_{g(e)};e) \downarrow$.

At stage s = 0 we let $\sigma_0 = \emptyset$. At each next stage,

If s = 3i + 1 then $\sigma_{3i+1} = \sigma(i, j, \sigma_{3i})$. Note that we can compute this value using an oracle for \emptyset' since σ_{3i} is partial computable with computable domain.

If s = 3i + 2 then, given σ_{3i+1} , choose some $n \in \omega$ such that $\sigma_{3i+1}(n) \uparrow$. Then define

$$\sigma_{3i+2}(n) = \begin{cases} 1 - \Psi_i(\emptyset; n) & \text{if } \Psi_i(\emptyset; n) \downarrow \\ 0 & \text{otherwise} \end{cases}$$

If s = 3i + 3, given σ_{3i+2} , we look for the least $e \leq 3i + 2$ such that $\Psi_e(\sigma_{3i+2};e) \uparrow$ and such that there exists a string σ compatible with σ_{3i+2} such that $\Psi_e(\sigma;e) \downarrow$ and giving only value 0 to elements of the columns with index smaller than e, when σ_{3i+2} is not already defined on them. If e exists, then let σ be the smallest string compatible with σ_{3i+2} and then define σ_{3i+3} as follows.

$$\sigma_{3i+3}(x) = \begin{cases} \sigma_{3i+2}(x) & \text{if } \sigma_{3i+2}(x) \downarrow \\ \sigma(x) & \text{if } \sigma(x) \downarrow \\ 1 & \text{if } x = \langle f(i), z \rangle, \text{ otherwise} \\ 0 & \text{if } x = \langle n, z \rangle \land n \neq f(i) \land n, z \leq 3i + 2 \end{cases}$$

In this case we also say that g receives attention for argument e at stage s. If e does not exist we define σ_{3i+3} as above but we take $\sigma = \emptyset$. That is we define σ_{3i+3} in this case as

$$\sigma_{3i+3}(x) = \begin{cases} \sigma_{3i+2}(x) & \text{if } \sigma_{3i+2}(x) \downarrow \\ 1 & \text{if } x = \langle f(i), z \rangle, \text{ otherwise} \\ 0 & \text{if } x = \langle n, z \rangle \land n \neq f(i) \land n, z \leq 3i+2 \end{cases}$$

We then let $A = \bigcup_{s \in \omega} \sigma_s$. Since the construction of A is recursive in \emptyset' , $A \leq_T \emptyset'$ is satisfied.

Lemma 6. $C \leq_T A'$.

Proof. Since the columns that correspond to the elements of \overline{C} are only finitely affected by the construction, the last clause in the definition of σ_{3i+3} ensures that A is total. We have that $A \leq_T \emptyset'$ by construction and $x \in C \iff \lim_{s \to \infty} A(\langle x, s \rangle) = 1$. So $C \leq_T A'$ is satisfied by the relativized limit lemma.

Lemma 7. $A' \leq_T C$.

Proof. We show how to construct the function g such that $\Psi_e(A;e) \downarrow$ if and only if $\Psi_e(\sigma_{g(e)};e) \downarrow$. Choose s' large enough so that the elements smaller than e which are in C have been generated before stage s'. We can find such s' recursively in C. Then let $s'' \geq s' + 4e$ be congruent to s'' = s'' + 4e be congruent to s' = s' + 4e be congruent t

Corollary 8. If a Π_1^0 class contains a member of every degree of any nonrecursive jump level below $\mathbf{0}'$, then it contains a member of every degree.

References

- [1] R.M.Friedberg: A criterion for completeness of degrees of unsolvability. Journal of Symbolic Logic, 23, (1957), p.159-160.
- [2] J.R.Shoenfield: On degrees of unsolvability. Ann. Math., 69, (1959), p.644-653.
- [3] ———: Degrees of models. Journal of Symbolic Logic, 25, (1960), p.233-237.
- [4] D.E.Diamondstone, D.D.Dzhafarov, R.I.Soare: Π_1^0 Classes, Peano Arithmetic, Randomness, and Computable Domination. Notre Dame J. Formal Logic Volume 51, Number 1 (2010), p.127-159.
- [5] T.Kent, A.E.M.Lewis: On the Degree Spectrum of a Π_1^0 Class. Transactions of the American Mathematical Society, Vol. 362 (2010), p.5283-5319.

- [6] G.Kreisel: Analysis of the Cantor-Bendixson theory by means of the analytic hierarchy. Bull. Acad. Polon. des Sciences, Ser. Math., Astronom. et Phys., 7 (1959), p.621-626
- [7] A.Ehrenfeucht: Separable theories. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 9 (1961), p.17-19.
- [8] D.Cenzer: Π_1^0 Classes in Recursion Theory. Handbook of Computability Theory. North-Holland, Studies in Logic and the Foundations of Mathematics Vol.140 (1999), p.37-89.
- [9] C.Jockusch, R.Soare: Π^0_1 classes and degrees of theories. Trans. Amer. Math. Soc. 173 (1972) p.33-56.
- [10] ——: Degrees of members of Π^0_1 classes. Pacific J. Math. 40 (1972), p.605-616.